

Rossmoyne Senior High School

Semester Two Examination, 2017

Question/Answer booklet

MATHEMATICS APPLICATIONS UNITS 3 AND 4 Section One: Calculator-free

Student Number: In figures

In words

Your name

Time allowed for this section

Reading time before commencing work: Working time: five minutes fifty minutes

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	7	7	50	52	35
Section Two: Calculator-assumed	12	12	100	98	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet.
- 3. You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page.
- 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you do not use pencil, except in diagrams.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

Section One: Calculator-free

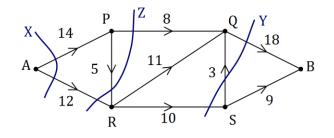
This section has **seven (7)** questions. Answer **all** questions. Write your answers in the spaces provided.

3

Working time: 50 minutes.

Question 1

The network shows a system of pipes with the maximum capacity for each pipe, in litres per second, shown on the edges.



(a) Cut *X* passes through edges *AP* and *AR*, and cut *Y* passes through edges *RS*, *SQ* and *QB*. Show these cuts on the network and state their capacities. (2 marks)

Solution
See network
Cut <i>X</i> has capacity 26 L/s and cut <i>Y</i> has capacity 28 L/s.
Specific behaviours
\checkmark shows cut X and states capacity
\checkmark shows cut Y and states capacity

(b) Determine the maximum flow through the system from *A* to *B* by listing each path used and the flow along each path. (3 marks)

Solution (A)				
APQB = 8				
APRQB = 5				
ARQB = 5				
ARSB = 7				
Total = 25 L/s				
Specific behaviours				
\checkmark at least two paths with correct flow contribution				
\checkmark all paths with correct flow contribution				
✓ states maximum flow				

(c) Show cut Z on the network that has capacity equal to the maximum flow. (1 mark)

Solution				
See diagram				
Specific behaviours				
✓ clearly shows cut				

(6 marks)

(5 marks)

(2 Marks)

CALCULATOR-FREE

2. (a)

Solution
See table
Specific behaviours
✓ at least 4 correct distances
✓ all correct distances

	A	В	С	D	E	F
A	—	4	-	-	—	5
В	4	_	3	—	_	_
С	_	3	—	5	6	2
D	_	_	5	—	4	_
E	_	_	6	4	_	5
F	5	_	2	_	5	_

(b) (i)

(ii)

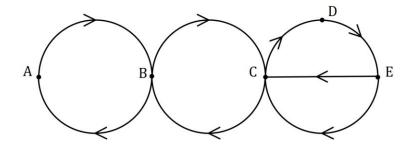
Solution
Minimum spanning tree = 18 km
Specific behaviours
✓ correct length
✓ correct units

(2 Marks)

(1 Mark)

(8 marks)

The digraph below represents a system of one-way streets that enable travel between five locations A, B, C, D and E.



(a) Complete the adjacency matrix below for the digraph.

	Α	В	С	D	Ε
Α	0	1	0	0	0
В	1	0	1	0	0
С	0	1	0	1	0
D	0	0	0	0	1
Ε	0	0	2	0	0

(2 marks)

Solution
See table
Specific behaviours
✓ at least 3 rows correct
✓ all correct

(b) State whether a closed walk of length 5 can start from vertex *B*. If yes, list the vertices on the walk. If no, explain why not. (2 marks)

(2 marks)

(c)	The graph is semi-Hamiltonian. Clearly explain what this means.

Solution					
An open path exists in the graph that includes every vertex once.					
Specific behaviours					
✓ states path visits all vertices just once					
✓ states path is open					

(d) List, in order, a set of vertices that must be visited to create a trail that includes every edge of the graph just once. (2 marks)

Solution				
ECBABCDEC				
Specific behaviours				
\checkmark starts at either <i>E</i> and ends at <i>C</i> or vice versa				
✓ correct listing				

v

Question 4

- (a) A sequence has recursive definition $T_{n+1} = -1.5T_n$, $T_1 = 12$.
 - (i) Determine the first three terms of this sequence.

ooration
$T_1 = 12$ $T_2 = -1.5(12) = -18$ $T_3 = -1.5(-18) = 27$
Specific behaviours
✓ at least one term correct, relative to previous term
✓ both terms correct

Solution

(ii) State, with reason, whether the sequence is arithmetic, geometric or neither.

> Solution Sequence is geometric, as terms have common ratio of -1.5. **Specific behaviours**

 \checkmark correct type and reason

- Consider the arithmetic sequence 12, 16, 20, 24, (b)
 - (i) Determine the 51^{st} term of the sequence.

- Determine the smallest value of n so that the n^{th} term of the sequence will exceed (ii) 416. (3 marks)
 - 12 + 4(n 1) = 4164(n-1) = 404n - 1 = 101n = 102Smallest value of *n* is 103 **Specific behaviours** ✓ forms equation ✓ solves equation ✓ states smallest value

Solution

Solution $T_n = 12 + 4(n-1)$ $T_{51} = 12 + 4(51 - 1)$

Specific behaviours ✓ uses form of nth term rule

 $T_{51} = 212$

 \checkmark determines T_{51}

(1 mark)

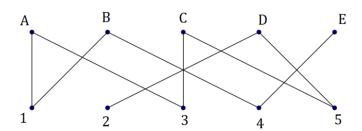
(2 marks)

(8 marks)

(2 marks)

(7 marks)

Five people, *A*, *B*, *C*, *D* and *E* are to be allocated to five tasks, 1, 2, 3, 4 and 5. The bipartite graph below shows the tasks that each of the five people can carry out.



(a) Explain why the graph is connected.

(1 mark)

Solution					
A path can be found to connect any vertex to all other vertices in the graph.					
Specific behaviours					
✓ clear explanation					

(b) Explain why the graph is not a complete bipartite graph, and state the number of edges the graph would have if it was a complete bipartite graph. (2 marks)

Solution					
All vertices from top set are not connected to all vertices in bottom set.					
$E = 5 \times 5 = 25$ edges					
$E = 3 \times 3 = 25$ euges					
Specific behaviours					
✓ clear explanation					
✓ correct number of edges					

(c) If person *A* is assigned to task 1, explain why a complete matching of people to tasks is not possible. (2 marks)

Solution					
If A does task 1, then only task possible for B is 4 - but this is also the only task that E can do, and so one of them cannot do a task.					
Specific behaviours					
✓ uses task 4					
✓ clear explanation					

(d) Determine a complete matching of people to tasks.

SolutionA-3, B-1, C-5, D-2, E-4.Specific behaviours \checkmark links E to 4 and D to 2 \checkmark correct matching

7

(2 marks)

(10 marks)

The following table shows the scores of four people, Ali, Bo, Cee and Dip after taking four tests in economics (E), geography (G), math (M) and physics (P).

	Ali	Во	Cee	Dip
ш	12	11	10	9
С	9	13	14	11
G	13	12	11	14
Р	11	9	10	13

Each of the four people are to be assigned to one of the four tests so that the total score is maximised. No-one can be assigned to more than one test.

(a) Explain why the Hungarian algorithm may be used to find the optimal assignment if each number in the table, n, is replaced by 14 - n. (2 marks)

Solution				
Hungarian algorithm is used to find the minimum assignment. To maximise we must minimise the difference from the largest score (14).				
Specific behaviours				
✓ states algorithm used to minimise				
\checkmark explains reason for $14 - n$				

(b) Form a new table by replacing each number in the original table, n, with 14 - n. (1 mark)

	Ali	Во	Cee	Dip
E	2	3	4	5
G	5	1	0	3
М	1	2	3	0
Р	3	5	4	1

Solution See table Specific behaviours ✓ correct values

(c) Show that, by reducing **rows first** and then columns, the resulting table is as shown at the top of the next page. (2 marks)

	Solution						
Reduce rows:							
	Ali	Во	Cee	Dip			
E	0	1	2	3			
G	5	1	0	3			
М	1	2	3	0			
Р	2	4	3	0			
Reduce of	Reduce column:						
	Ali	Bo	Cee	Dip			
E	0	0	2	3			
G	5	0	0	3			
М	1	1	3	0			
Р	2	3	3	0			
Specific behaviours							
 ✓ reduces three rows 1 and 4 ✓ reduces column 2 							

	Ali	Во	Cee	Dip
E	0	0	2	3
G	5	0	0	3
М	1	1	3	0
Р	2	3	3	0

(d) Show that the zeros in the table above can be covered with two horizontal lines and one vertical line. Hence use the Hungarian algorithm to reduce the table to a form where four lines are required to cover all zeros. (2 marks)

Solution								
Subtract 1 from uncovered numbers and add 1 to								
those covered twice:								
	Ali	Bo	Cee	Dip				
E	0	0	2	4				
G	5	0	0	4				
M	0	0	2	0				
Р	1	2	2	0				
See alternative shading below								
Specific behaviours								
✓ shading or lines								
✓ reduces								

(e) Determine how each of the people should be assigned to the four tests to maximise the total score, and state what this maximum score is. (3 marks)

				Solutio	n			
Alternativ	ve sha	adin	<u>g</u>					
	A	li	Bo	Cee	Di	C		
E	0)	0	2	4			
G	5	5	0	0	4			
М	0)	0	2	0			
Р	1	-	2	2	0			
Ali	Ali		Во	Cee			Dip	
Econom	Economics		Math	Geography		F	Physics	
or	or							
Ali	Ali		Bo	Cee			Dip	
Math	Math E		onomics	Geography		F	Physics	
Maximum score is $12 + 12 + 14 + 13 = 13 + 11 + 14 + 13 = 51$								
Specific behaviours								
✓ shades optimal assignment								
✓ lists people and tests								
✓ states	maxir	num	score					

10

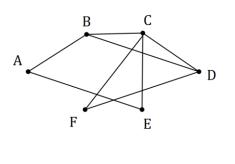
Question 7

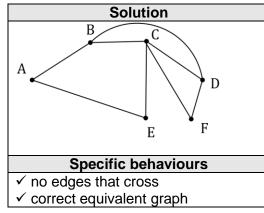
E

(a) Redraw the following graph to clearly show that it is planar.

(8 marks)

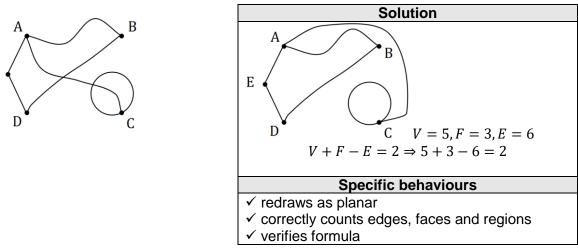
(2 marks)



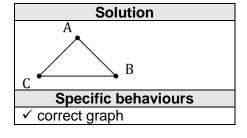


(b) Verify Euler's formula for the graph below.

(3 marks)



- (c) Let K_n be a complete graph with n vertices.
 - (i) Draw the graph K_3 .



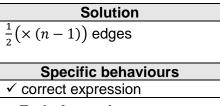
(1 mark)

(1 mark)

(ii) Determine the total number of edges graph K_4 has.

Solution					
6 edges					
-					
Specific behaviours					
✓ ✓ correct number					

(iii) State, in terms of n, the total number of edges graph K_n has. (1 mark)



SN085-106-2

Additional working space

Question number: _____

© 2017 WA Exam Papers. Rossmoyne Senior High School has a non-exclusive licence to copy and communicate this document for non-commercial, educational use within the school. No other copying, communication or use is permitted without the express written permission of WA Exam Papers. SN085-106-2.